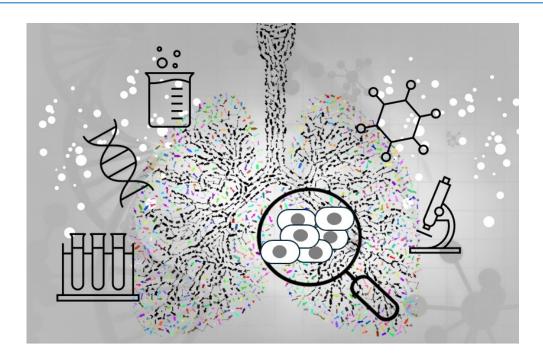


Zusammenfassung der Ergebnisse des BayUFP Projektverbunds

BayUFP wurde vom Bayerischen Staatsministerium für Umwelt und Verbraucherschutz finanziert.

Der **Projektverbund BayUFP** hatte sich zum Ziel gesetzt, die atmosphärischen und **gesundheitlichen Aspekte ultrafeiner Partikel (UFP)** in der Luft zu untersuchen. Diese winzigen Partikel können aufgrund ihrer Größe tief in die Lunge eindringen und wurden in der Forschung mit verschiedenen biologischen Reaktionen in Verbindung gebracht.

Um dieses komplexe Thema zu beleuchten, vereinte der Verbund Wissenschaftlerinnen und Wissenschaftler aus verschiedenen Disziplinen. Gemeinsam entwickelten sie neue Messmethoden, charakterisierten die Zusammensetzung der UFP und untersuchten ihre Auswirkungen auf den menschlichen Körper.


Ein wichtiger Bestandteil des Projekts war die Öffentlichkeitsarbeit. Über eine eigene Website (www.ultrafeinepartikel.de), Vorträge und Veranstaltungen informierte der Verbund die Öffentlichkeit über die Bedeutung der Forschung zu UFP und die daraus resultierenden Erkenntnisse. Zudem wurde ein enger Austausch mit Politik und Behörden gepflegt, um die Ergebnisse der Forschung in politische Entscheidungen einfließen zu lassen.

Durch die intensive Zusammenarbeit der Projektpartner konnten neue Erkenntnisse gewonnen werden. So wurde ein tieferes Verständnis der Eigenschaften und Entstehung der UFPs erzielt. Zudem wurde ein Beitrag zur besseren Einschätzung der Wechselwirkungen von UFP mit biologischen Systemen geleistet. Die Ergebnisse des BayUFP-Projektverbunds tragen dazu bei, die wissenschaftliche Basis für Maßnahmen zur Verbesserung der Luftqualität zu stärken.

Die Ergebnisse des BayUFP-Projektverbunds haben wertvolle Erkenntnisse über ultrafeine Partikel und ihre Wechselwirkungen mit dem menschlichen Organismus geliefert, insbesondere bei bestimmten Bevölkerungsgruppen. Die Forscherinnen und Forscher haben Zusammenhänge zwischen der Exposition gegenüber UFP und beobachteten biologischen Reaktionen im Atemwegs- und Herz-Kreislauf-System festgestellt. Diese Erkenntnisse bieten eine wichtige Grundlage für die Entwicklung von Maßnahmen zur Verbesserung der Luftqualität und zum Schutz der öffentlichen Gesundheit. Dank modernster Messtechnik konnten die Wissenschaftlerinnen und Wissenschaftler des BayUFP-Projektverbunds detaillierte Einblicke in die Zusammensetzung und Eigenschaften von UFP gewinnen. Diese Ergebnisse tragen dazu bei, die wissenschaftliche Basis für zukünftige Strategien zur Luftreinhaltung zu stärken und die Lebensqualität der Bevölkerung zu verbessern.

Projektverantwortlicher: Prof. Dr. med. Hans Drexler, Institut für Arbeits-, Sozial- und Umweltmedizin, Friedrich-Alexander Universität Erlangen

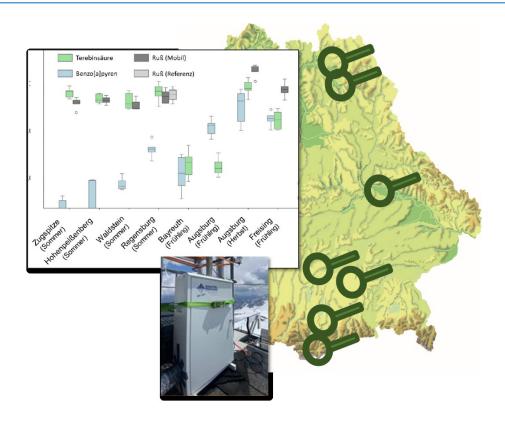
- Der BayUFP-Projektverbund untersuchte gesundheitliche Aspekte von ultrafeinen Partikeln (UFP) durch interdisziplinäre Zusammenarbeit, entwickelte neue Messmethoden und analysierte UFP-Auswirkungen auf den menschlichen Körper.
- BayUFP lieferte detaillierte Einblicke in UFP-Zusammensetzung und biologische Reaktionen, identifizierte Zusammenhänge zwischen UFP-Exposition und gesundheitlichen Auswirkungen und stärkte die wissenschaftliche Basis für die Luftreinhaltung.
- Die Ergebnisse des Verbunds unterstreichen die Notwendigkeit der Fortentwicklung internationaler Luftqualitätsstandards und dienen als Grundlage für die Entwicklung neuer Strategien zum Schutz der öffentlichen Gesundheit.
- BayUFP informierte die Öffentlichkeit durch Website, Vorträge und Veranstaltungen über UFP-Forschung und deren Erkenntnisse.

Ziel dieses Forschungsprojekts war es, ein besseres Verständnis der Wechselwirkungen von ultrafeinen Partikeln (UFP) mit der Lunge zu erlangen und die potenziellen Zusammenhänge zwischen diesen Partikeln und biologischen Prozessen zu untersuchen. UFP sind winzige Teilchen, die in der Luft vorkommen und aufgrund ihrer geringen Größe tief in die Lunge eindringen können. Um die realen Bedingungen im Körper nachzubilden, wurden die Auswirkungen von zwei verschiedenen UFP-Aerosolen auf spezielle Zellkulturen im Labor untersucht. Diese Aerosole unterschieden sich in ihrer Zusammensetzung, insbesondere in der Menge an organischen Stoffen, die an die Partikel gebunden waren.

Die Forschenden analysierten, wie sich die UFP auf verschiedene Schlüsselprozesse in den Zellen auswirken, die im Zusammenhang mit Lungenerkrankungen stehen. Dazu gehörte die Untersuchung von Schäden am Erbgut (DNA), oxidativem Stress (eine Art zellulärer Stressreaktion) und Entzündungsreaktionen. Zusätzlich wurden Stoffwechselprodukte in den Zellen analysiert, um die zugrunde liegenden molekularen Mechanismen besser zu verstehen. Diese Stoffwechselprofile wurden dann mit Daten von Patienten und Tierversuchen verglichen, um Hinweise auf mögliche Lungenerkrankungen zu erhalten.

Die Ergebnisse der In-vitro-Zellversuche zeigten, dass selbst geringe Mengen von UFP mit geringer organischer Beladung messbare Veränderungen in den Zellen hervorrufen können. Es wurden Veränderungen in der DNA beobachtet. Zudem zeigen Stoffwechselanalysen, dass UFP oxidative Stressreaktionen und Entzündungsprozesse in den Zellen auslösen, und die Bildung von Narbengewebe (Fibrosierung) fördern.

Die **Relevanz** dieser In-vitro-Befunde für den menschlichen Organismus muss in weiteren Studien untersucht werden.


Die Studie liefert wichtige Einblicke in die Wechselwirkungen von UFP mit Lungenzellen und zeigt vergleichbare Effekte wie bei Feinstaubexpositionen. Allerdings basieren diese Ergebnisse auf Zellkulturmodellen und müssen in weiteren Studien an ganzen Organismen bestätigt werden

Projetverantwortliche: Prof. Dr. med. Simone Schmitz-Spanke, Institut für Arbeits-,

Sozial- und Umweltmedizin, Friedrich-Alexander Universität

Erlangen

- In dieser Studie wurde untersucht, wie ultrafeine Partikel (UFP) auf Lungenzellen wirken. Dazu wurden Lungen-Zellkulturen mit UFP-Aerosolen unterschiedlicher Zusammensetzung behandelt und die Reaktion der Zellen analysiert.
- Ultrafeine Partikel verursachten im untersuchten Zellmodell Schäden des Erbguts und lösten spezielle Stressreaktionen aus; selbst in geringen Konzentrationen und mit geringer organischer Beladung.
- Wichtig ist, dass die Befunde für das Zellmodell gelten. Die Relevanz für den Menschen erfordert weitere Untersuchungen.

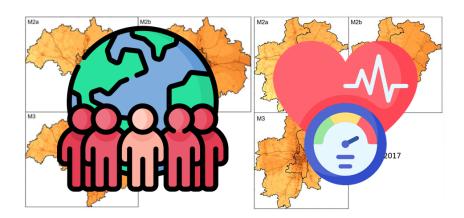
Ziel dieses Teilprojekts war es, geeignete Methoden zur Untersuchung ultrafeiner Partikel (UFP) in der Luft zu entwickeln und zu optimieren.

Die besonderen Eigenschaften ultrafeiner Partikel (UFP), insbesondere ihre geringe Größe und ihre Fähigkeit, tief in die Lunge einzudringen, machen sie zu einem wichtigen Forschungsgegenstand. Um ihre Auswirkungen auf die menschliche Gesundheit besser einschätzen zu können, ist es notwendig, ihre chemische Zusammensetzung genau zu kennen.

Ein wichtiger Teil des Projekts war es herauszufinden, wie man die winzigen Partikel aus der Luft sammeln und nach der Größe trennen kann, um sie genauer untersuchen zu können. Dafür haben Wissenschaftlerinnen und Wissenschaftler verschiedene Geräte, sogenannte Kaskadenimpaktoren, ausprobiert. Diese Geräte funktionieren wie kleine Siebe, die die Partikel nach ihrer Größe sortieren. Am besten hat sich dabei der UltraMOUDI bewährt, weil er die Partikel besonders gut auffängt und einfach zu bedienen ist.

Ein weiterer wichtiger Aspekt war die Entwicklung von analytischen Methoden zur Bestimmung der chemischen Zusammensetzung der gesammelten Partikel. Sie haben die gesammelten Partikel sowohl auf bestimmte, bekannte Schadstoffe hin untersucht (wie zum Beispiel Polyzyklische Kohlenwasserstoffe) als auch breitbandig analysiert, um ihre gesamte chemische Zusammensetzung zu erfassen.

Um die entwickelten Methoden unter realen Bedingungen zu testen, wurden zwei Messmodule aufgebaut: Ein stationäres Referenzmodul und ein mobiles Wandermodul. Das Referenzmodul diente als Vergleichsmaßstab, während das Wandermodul an verschiedenen Standorten in ganz Bayern eingesetzt wurde, um zu untersuchen, wie sich die Zusammensetzung der UFP von Ort zu Ort unterscheidet.


Die Ergebnisse der Feldmessungen zeigten, dass die Zusammensetzung der UFP stark von den jeweiligen Standortbedingungen abhängt. So konnten beispielsweise klare Unterschiede zwischen städtischen und ländlichen Gebieten festgestellt werden. Darüber hinaus wurden Zusammenhänge zwischen der Zusammensetzung der UFP und bestimmten meteorologischen Bedingungen beobachtet.

Projektverantwortliche: Prof. Dr. Anke Nölscher, Lehrstuhl für Atmosphärische Chemie,

Universität Bayreuth

- Das Projekt hat eine neue Methode zur Analyse ultrafeiner Partikel (UFP) entwickelt.
- Die Studie zeigt, dass die Zusammensetzung von UFP je nach Standort stark variiert und von zahlreichen Faktoren beeinflusst wird.
- Die Studie liefert wichtige Erkenntnisse für zukünftige Forschungsarbeiten, um die komplexen Zusammenhänge zwischen Luftverschmutzung und Gesundheit noch besser zu verstehen.

TP4 Langzeitkonzentrationen und gesundheitliche Auswirkungen in bayerischen Zentren der NAKO-Gesundheitsstudie

Feinstaub in der Luft ist ein Gemisch aus verschiedenen Partikeln, darunter ultrafeine Partikel (UFP). UFP sind besonders interessant, weil sie trotz ihrer geringen Masse aufgrund ihrer Größe und Beschaffenheit anders wirken können als größere Feinstaubpartikel. Obwohl es Hinweise darauf gibt, dass UFP gesundheitsschädlich sein könnten, gibt es bisher wenig gesicherte Erkenntnisse über die langfristigen Auswirkungen auf die Gesundheit, insbesondere in Bezug auf die langfristige Belastung durch UFP in der Atemluft.

Dieses Teilprojekt verfolgte daher das Ziel, die langfristigen gesundheitlichen Auswirkungen von UFP in den bayerischen Studienregionen Augsburg und Regensburg der NAKO-Gesundheitsstudie zu untersuchen. Die NAKO-Gesundheitsstudie ist eine große deutsche Studie, in der die Gesundheit vieler Menschen über einen langen Zeitraum hinweg verfolgt wird.

Für das Projekt wurde die räumliche Verteilung der Partikelanzahlkonzentration als Indikator für UFP modelliert. Bestehende Modelle zur Berechnung der UFP-Konzentrationen wurden verfeinert und an die spezifischen Bedingungen in Augsburg und Regensburg angepasst. Diese Anpassung erfolgte unter Verwendung von Daten aus früheren Studien sowie durch neu durchgeführte Messungen, welche die Genauigkeit der Modelle überprüfen und verbessern sollten. In der Region Regensburg wurden deshalb an verschiedenen Standorten Messungen der UFP-Konzentration durchgeführt, um die entwickelten Modelle validieren zu können.

Zum anderen sollte der Zusammenhang zwischen der langfristigen Belastung mit UFP und bestimmten Gesundheitsproblemen, insbesondere Herz-Kreislauf-Erkrankungen und Stoffwechselstörungen, untersucht werden. Hierfür wurden die Daten der NAKO-Gesundheitsstudie genutzt. Die UFP-Belastung der Studienteilnehmenden in Augsburg und Regensburg wurde berechnet und analysiert, um herauszufinden, ob ein Zusammenhang mit ihrer Gesundheit besteht.

Die Ergebnisse des Projekts zeigten, dass die entwickelten Modelle die UFP-Konzentrationen in Augsburg und Regensburg gut vorhersagen konnten. In Bezug auf die gesundheitlichen Auswirkungen fand die Studie einen Zusammenhang zwischen langfristiger UFP-Belastung und dem Auftreten von Herz-Kreislauf-Erkrankungen (Bluthochdruck und Herzinfarkte). Dieser Zusammenhang blieb auch nach Berücksichtigung anderer Faktoren wie Feinstaub und Stickstoffdioxid bestehen. Für die weiteren betrachteten Erkrankungen (Schlaganfall und Diabetes) konnten jedoch keine konsistenten Zusammenhänge mit den verschiedenen Luftschadstoffen gefunden werden.

Die entwickelten Modelle können dazu beitragen, die UFP-Belastung der Bevölkerung besser zu verstehen. Es ist jedoch wichtig zu betonen, dass es sich bei der Studie um eine Beobachtungsstudie handelt und weitere Forschung notwendig ist, um die genauen Zusammenhänge vollständig zu bestätigen und die langfristigen Auswirkungen von UFP auf die Gesundheit abschließend zu bewerten.

Projektverantwortliche: Prof. Dr. Anette Peters, Lehrstuhl für Epidemiologie, Ludwigs-

Maximilian-Universität München

- Die Studie zeigt, dass die Abschätzung der räumlichen Verteilung von ultrafeinen Partikeln (UFP) mittels Partikelanzahlkonzentration eine valide und kostengünstige Methode zur Bewertung der langfristigen UFP-Belastung in großen Studienregionen darstellt, insbesondere für epidemiologische Studien.
- Die Ergebnisse geben Hinweise auf ein erhöhtes Risiko für Herz-Kreislauf-Erkrankungen, insbesondere Bluthochdruck, durch eine langfristig erhöhte Belastung mit UFP.
- Die Studie liefert wichtige Erkenntnisse für zukünftige Forschungsarbeiten, um die komplexen Zusammenhänge zwischen Luftverschmutzung und Gesundheit noch besser zu verstehen.

TP5 Akute gesundheitliche Effekte ultrafeiner Partikel

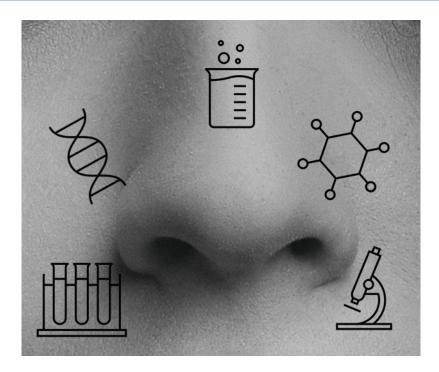
In diesem Projekt wurde untersucht, wie sich ultrafeine Partikel (UFP) in der Luft kurzfristig auf die Gesundheit von Erwachsenen auswirken. UFP sind winzige Teilchen, die aufgrund ihrer Beschaffenheit anders wirken können als größere Feinstaubpartikel. Es wurde angestrebt, die spezifischen Auswirkungen von UFP unter Berücksichtigung auch anderer Luftschadstoffe zu untersuchen, da UFP oft zusammen mit anderen Luftschadstoffen auftreten, was die Forschung erschwert.

Um dies zu erreichen, wurde ein **mobiles Messsystem** entwickelt, das an verschiedenen Orten im Großraum München die Konzentration von UFP und anderen Luftschadstoffen messen konnte. Über 20 mögliche Messorte wurden erkundet, um diejenigen auszuwählen, die am besten die gewünschten Expositionsbedingungen für die Studie boten. **Es wurden vier Szenarien festgelegt:** Ein Ort mit hoher Belastung durch Verkehrs-UFP und andere Schadstoffe ("Hotspot"), ein Ort mit geringerer UFP-Belastung und relativ höherer Belastung durch andere Schadstoffe ("städtischer Hintergrund"), ein Ort mit hoher UFP-Belastung durch Holzverbrennung ("Biomasseverbrennung") und ein Ort mit insgesamt geringer Belastung durch Luftschadstoffe ("Kontrolle").

Es nahmen 26 freiwillige, gesunde Erwachsene an der Studie teil. Sie wurden jeweils 75 Minuten lang an einem der vier Orte exponiert, wobei die Reihenfolge zufällig war und zwischen den Expositionen jeweils mindestens vier Tage Pause lagen. Vor und nach jeder Exposition wurden medizinische Untersuchungen durchgeführt, darunter verschiedene Lungenfunktionstests, Messungen von Blutdruck und Herzfrequenz, sowie die Erfassung von Symptomen.

Die Ergebnisse zeigten, dass die Teilnehmenden nach der Exposition eine leichte Abnahme der Lungenfunktion aufwiesen, insbesondere des Alveolarvolumens, was auf eine diskrete Veränderung in der Lungenperipherie hindeutet. Dieser Effekt schien am ehesten mit der

UFP-Belastung zusammenzuhängen, auch nachdem andere Luftschadstoffe berücksichtigt wurden. Es gab daneben eine **geringfügige Abnahme der Herzfrequenz** über die Expositionsszenarien hinweg.


Zusammenfassend deuten die Ergebnisse darauf hin, dass UFP kurzfristige, vermutlich reizungsbedingte Effekte auf die Lungenperipherie haben könnten, die auch mit vegetativen Veränderungen einhergehen. Die Studie liefert wichtige Hinweise auf mögliche gesundheitliche Auswirkungen von UFP und unterstreicht die Notwendigkeit weiterer Forschung, um langfristige Folgen besser zu verstehen.

Projektverantwortlicher: PD Dr. med. Stefan Karrasch, Institut und Poliklinik für Arbeits-,

Sozial- und Umweltmedizin, Klinikum der Universität München

- Ultrafeine Partikel (UFP) könnten wegen ihrer spezifischen Eigenschaften anders wirken als größere Feinstaubpartikel und ihre kurzfristigen gesundheitlichen Auswirkungen sind noch nicht gut verstanden.
- Eine Studie mit 26 Erwachsenen in München untersuchte die akuten gesundheitlichen Effekte von UFP-Belastung in verschiedenen realistischen Szenarien (Hotspot, städtischer Hintergrund, Biomasse, Kontrolle) auf Lungenfunktion und Herz-Kreislauf-System.
- Die Ergebnisse deuten auf kurzfristige, vermutlich reizbedingte diskrete Effekte von UFP auf die Lungenperipherie hin, was in künftigen Studien zur Klärung möglicher langfristiger Folgen zu eruieren ist.

TP6 Toxikologische und funktionelle Bewertung UFP

In diesem Forschungsprojekt wurde untersucht, wie ultrafeine Partikel (UFP) mit der **Schleimhaut und den Zellen der oberen Atemwege** in Kontakt treten und diese beeinflussen können.

Es wurden spezielle Testmodelle entwickelt, die der menschlichen Nasenschleimhaut ähneln. Diese Modelle bestanden aus Zellen von Patienten, und zwar aus Nasenschleimhautzellen, Epithelzellen (Zellen, die die Oberfläche von Geweben bedecken) und Fibroblasten (Zellen, die Bindegewebe bilden), die in einer dreidimensionalen Struktur zusammengebracht wurden. Die Modelle wurden unter speziellen Bedingungen gezüchtet, die es den Zellen ermöglichten, sich ähnlich wie in der natürlichen Umgebung zu entwickeln. Dadurch entstand ein UFP-Testsystem für den oberen Atemtrakt (Nase), das eine hohe Ähnlichkeit zu den Bedingungen im menschlichen Körper aufweist.

Die Modelle wurden in speziellen Kammern am Helmholtz Zentrum München mit UFP exponiert, die durch einen Verbrennungsgenerator erzeugt wurden. Dabei wurden verschiedene Aspekte untersucht, wie die UFP die Barrierefunktion der Schleimhaut, toxikologische Parameter und Entzündungsmediatoren beeinflussen.

Die Ergebnisse zeigten, dass es keine relevanten akuten Effekte durch die UFP-Exposition gab. Es gab jedoch Hinweise auf leichte Störungen der Barrierefunktion der Atemwegszellen sowie auf individuelle Reaktionen der verschiedenen Zellspender. Dies könnte darauf hindeuten, dass Menschen unterschiedlich auf UFP reagieren.

Insgesamt zielte das Projekt darauf ab, die Auswirkungen von UFP auf die Funktionalität der Schleimhaut der oberen Atemwege zu bewerten. Dabei wurden verschiedene Aspekte berücksichtigt, wie die Integrität der Schleimhautbarriere, die durch UFP verursachte Zytound Genotoxizität (Zell- und Erbgutschädigung) sowie die Analyse, inwieweit die Zellen nach UFP-Kontakt eine akute Entzündungsreaktion fördern könnten. Das Projekt lieferte wichtige Erkenntnisse über die Wechselwirkung von UFP mit den Zellen der oberen Atemwege und trug dazu bei, die potenziellen gesundheitlichen Auswirkungen von UFP besser zu verstehen.

Projektverantwortlicher: Prof. Dr. med. Stephan Hackenberg, Klinik und Poliklinik für Hals-Nasen-, Ohrenheilkunde, Universitätsklinikum Würzburg

- In diesem Forschungsprojekt wurden spezielle Testmodelle entwickelt, die der menschlichen Nasenschleimhaut ähneln, um die Auswirkungen von ultrafeinen Partikeln (UFP) auf die oberen Atemwege zu untersuchen.
- Die Modelle wurden mit UFP exponiert, um zu analysieren, wie diese die Barrierefunktion der Schleimhaut, toxikologische Parameter und Entzündungsmediatoren beeinflussen.
- Die Ergebnisse zeigten keine relevanten akuten Effekte, aber Hinweise auf leichte Störungen der Barrierefunktion und individuelle Reaktionen, was auf unterschiedliche Empfindlichkeit gegenüber UFP hindeutet.

FAZIT

Ultrafeine Partikel: Neue Erkenntnisse für Gesundheit und Luftqualität

Der BayUFP-Projektverbund hat das Verständnis über ultrafeine Partikel (UFP) in der Luft erheblich erweitert. Die Forschung zeigt, dass diese winzigen Partikel tief in die Lunge gelangen können. Zellversuche im Labor lieferten Hinweise darauf, dass UFP biologische Reaktionen wie oxidativen Stress und Entzündungen auslösen können. Es ist jedoch wichtig zu betonen, dass die Übertragbarkeit dieser Laborergebnisse auf den menschlichen Körper noch in weiteren Studien überprüft werden muss.

Dennoch wurden in anderen Teilen des Projekts auch Zusammenhänge zwischen einer langfristigen Belastung mit UFP und Herz-Kreislauf-Erkrankungen festgestellt.

Auch wenn Studien zur **kurzfristigen** Exposition teilweise nur **geringfügige Effekte** auf die Lungenfunktion zeigten, liefern diese Erkenntnisse eine **wichtige Grundlage für zukünftige Strategien zur Luftreinhaltung**.

Es ist wichtig zu betonen, dass es sich hier um wertvolle wissenschaftliche Einblicke handelt, die helfen, Luftqualität und Gesundheit noch besser zu verstehen. Die gewonnenen Daten stärken die Basis für fundierte Entscheidungen im Umweltschutz.